Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bo Yang, ${ }^{\text {a }}$ Shu-Sheng Zhang, ${ }^{\text {b }}$ Yang-Fang Wang, ${ }^{\text {b }}$ Xue-Mei Li ${ }^{\text {b }}$ and Kui Jiao ${ }^{\text {b }}$ *
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Ocean University of China, 266003 Qingdao, Shandong, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao,
Shandong, People's Republic of China
Correspondence e-mail:
zhangshush@public.qd.sd.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.052$
$w R$ factor $=0.133$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Amino- N-(2,3,4-tri-O-acetyl- β-d-xylopyranosyl)thiocarbamide

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$, the xylopyranosyl ring adopts a chair conformation. All the substituents are in equatorial positions. There are four intramolecular interactions forming four closed rings. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions link the molecules into a three-dimensional framework.

Comment

Thiosemicarbazones are important because of their wide range of applications in industry, in medicine and in the analytical determination of various metal ions (Alicia et al., 1998). N, N^{\prime}-Disubstituted thioureas are known to exhibit antiviral, antitubercular and herbicidal activities (Li et al., 2001). Recently, we have synthesized the title compound, (I). An X-ray crystallographic analysis of (I) was undertaken to establish its stereochemistry.

(I)

The bond lengths and angles in (I) have normal values and are in good agreement with those in a related compound, O-methyl- N-(2,3,4-tri- O-acetyl- β-D-xylopyranosyl)thiocarbamate (Yang et al., 2004). The xylopyranosyl ring adopts a chair conformation (Fig. 1). The sum of the bond angles around atom N3 indicates a pyramidal configuration. Each of the ring substituents is planar and occupies an equatorial position. All the substituents are involved in intramolecular interactions (Table 2), forming one seven-membered ring and three five-membered rings. The molecular packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ (Table 2 and Fig. 2) interactions, which lead to the formation of a three-dimensional framework.

Experimental

Ethanol (100 ml) and hydrazine hydrate (50% aqueous solution, $1.2 \mathrm{ml})$ were mixed below 278 K in an ice bath. (2,3,4-Tri- O-methyl)-β-D-xylopyranosyl isothiocyanate (3.27 g) in ethanol (30 ml) was added dropwise with stirring. The solution was filtered after 10 min of stirring. Pale-yellow single crystals suitable for X-ray crystallographic analysis were obtained by recrystallization from ethyl acetate/ petroleum ether ($1: 3, v / v$).

Received 18 February 2004
Accepted 10 March 2004
Online 24 March 2004

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$
$M_{r}=349.36$
Monoclinic, C2
$a=22.560$ (8) A
$b=5.4253(19) \AA$
$c=15.057$ (5) A
$\beta=109.886$ (6) ${ }^{\circ}$
$V=1733.0(10) \AA^{3}$
$Z=4$
$D_{x}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2772 reflections
$\theta=1.6-26.4^{\circ}$
$\mu=0.22 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, yellow
$0.26 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.944, T_{\text {max }}=0.974$
5020 measured reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0525 P)^{2}\right.$
+1.2246 P]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack (1983), 803 Friedel pairs
Flack parameter $=-0.07(16)$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

S1-C6	$1.685(5)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.442(5)$
N1-C6	$1.342(5)$	$\mathrm{O} 3-\mathrm{C} 7$	$1.175(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.434(6)$	$\mathrm{O} 4-\mathrm{C} 9$	$1.314(6)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.324(6)$	$\mathrm{O} 4-\mathrm{C} 3$	$1.442(5)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.407(6)$	$\mathrm{O} 5-\mathrm{C} 9$	$1.177(7)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.423(6)$	$\mathrm{O} 6-\mathrm{C} 11$	$1.335(5)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.429(7)$	$\mathrm{O} 6-\mathrm{C} 4$	$1.455(6)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.357(6)$	$\mathrm{O} 7-\mathrm{C} 11$	$1.184(6)$
N3-N2-C6-N1	$-2.4(6)$	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	$176.1(4)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 6-\mathrm{S} 1$	$-179.9(3)$	$\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 9-\mathrm{O} 5$	$-2.4(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{N} 2$	$171.1(4)$	$\mathrm{C} 3-\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 10$	$177.6(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{S} 1$	$-11.5(6)$	$\mathrm{C} 4-\mathrm{O} 6-\mathrm{C} 11-\mathrm{O} 7$	$-1.7(7)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 3$	$-4.6(7)$	$\mathrm{C} 4-\mathrm{O} 6-\mathrm{C} 11-\mathrm{C} 12$	$179.3(4)$

Figure 2
Packing diagram of (I), showing the formation of a three-dimensional framework.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.86	2.57	$3.117(6)$	123
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3$	0.86	2.25	$2.630(6)$	107
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.55	$3.322(5)$	150
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 7^{\text {ii }}$	$0.90(3)$	$2.31(3)$	$3.198(6)$	$174(4)$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{~S} 1^{\text {iii }}$	$0.89(3)$	$2.78(6)$	$3.520(5)$	$142(5)$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1$	0.98	2.66	$3.090(5)$	107
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 5$	0.98	2.31	$2.712(7)$	104
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 7$	0.98	2.35	$2.727(6)$	102
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{O} 3^{\text {iv }}$	0.96	2.41	$3.300(7)$	154
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O}^{\text {iv }}$	0.96	2.46	$3.281(7)$	144

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y,-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (iii) $x, 1+y, z$; (iv) $x, y-1, z$.
Atoms H3A and H3B were located in a difference map and included in the refinement with an $\mathrm{N}-\mathrm{H}$ distance restraint of 0.89 (1) \AA. The remaining H atoms were positioned geometrically $(\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.96-0.98 \AA)$ and treated as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ [for methyl H atoms, $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})\right]$. A rotating-group model was used for the methyl groups.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

This project was supported by the Natural Science Foundation of China (grant No. 20275020), the Natural Science Foundation of Shandong Province (grant No. Z2002B02) and the Outstanding Young Adult Scientific Research Encouraging Foundation of Shandong Province (grant No. 03BS081).

organic papers

References

Díaz, A., Fragoso, A., Cao, R \& Vérez, V. (1998). J. Carbohydr. Chem. 17, $293-$ 303.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Li, J.-P., Wang, Y.-L., Wang, H., Luo, Q.-F. \& Wang, X.-Y. (2001). Synth. Comтии. 31, 781-785.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Yang, B., Jiao, K., Li, J.-Z., Li, X.-M. \& Zhang, S.-S. (2004). In preparation.

